
www.OpenSourceForU.com  |  OPEN SOURCE FOR YOU  | APRIL 2021  |  93

AdminInSight

Apache Camel offers various components and enterprise integration patterns (EIPs)
to achieve concurrency. This article explains the various options available and the
best practices to be followed to achieve high scalability when using these EIPs.

Implementing Parallel
Processing with Apache Camel

A
pache Camel provides a
number of EIPs (listed
below) that allow a main
route to divide processing

across multiple sub-routes:
�� Multicast
�� Split
�� recipientList
�� wireTap

Some of these EIPs provide
parallel processing support out-of-
the-box, helping to achieve high
scalability. Camel ships with default
config settings for these EIPs,
which can be tuned further to suit
one’s requirements to get better
performance. This article discusses
some such useful settings that provide
better performance when tuned.

To better illustrate these options
let us consider the code snippet given
below that uses Camel’s Multicast EIP.

We will explore the multiple tuning
options available for this EIP and, using
sample code snippets, explain how they
can be tuned:

From (“mainRoute”)

	 .multicast()

	 .aggregationStrategy (new

ResponseAggregator())

	 .parallelProcessing()

	 .to (“subRoute1”, “subRoute2”,

subroute3”)

A message arriving at route
‘mainRoute’ is being multicast to three
different sub-routes which process
it in parallel, and once done with
processing, the response is aggregated
using the aggregation strategy defined
in ResponseAggregator class. Now
let us look at the various fine-tuning
options available to achieve high
concurrency and scalability out of the
above implementations.

a. Custom thread pool
When using Multicast EIP for parallel
processing, Camel uses a default thread
pool which has a maximum pool size

of 20, limiting the number of parallel
threads that can be spanned to 20:

<threadPoolProfile

id=”defaultThreadPoolProfile”

defaultProfile=”true”

poolSize=”10” maxPoolSize=”20”

maxQueueSize=”1000”

allowCoreThreadTimeOut=”false”

rejectedPolicy=”CallerRuns”/>

With these pool size settings,
multicast invocation becomes a major
performance bottleneck when processing
higher transactions per second (TPS).
Also, in cases like the above, where the
sub-routes are calls to other components,
the pool threads will be majorly in a
waiting state and get exhausted quickly.
This will result in incoming requests
simply waiting for pool threads to free
up, leading to an increase in response
time and decreased throughput.

It’s recommended to use a custom
thread pool tuned for the performance
needs of each use case rather than
using default thread pool settings. All
the parallel processing EIPs mentioned
above provide a mechanism for passing a
custom thread pool. There are two ways
to customise a processor’s thread pool.

 Approach 1: Specify a custom
thread pool—explicitly create an
ExecutorService (thread pool) instance
and pass it to the executorService option.
For example:

from (“mainRoute”)

	 .multicast()

3

Camel Parallel Processing
Apache Camel provides many EIPs listed below that allow a main route to divide processing
across multiple sub routes:

• Multicast

• Split

• recipientList

• wireTap

Some of these EIPs provide parallel processing support out of the box helping to achieve high
scalability. Camel ships with default config settings for these EIPs which can further be tuned to
suit as per requirements to derive better performance. This document discusses some such
useful settings that provide better performance when tuned.

To better illustrate these options let us consider the below code snippet that uses Camel’s
Multicast EIP. We will explore the multiple tuning options available for this EIP and, using
sample code snippets, explain how they can be tuned.

A message arrived at route “mainRoute” is being multicast to three different subroutes which
process this message in parallel and, once done with processing, response is aggregated using
aggregation strategy defined in ResponseAggregator class. Now, let us look at the various fine-
tuning options available to achieve high concurrency and scalability out of the above
implementation.

Main Route

SubRoute-1

SubRoute-2

SubRoute-N

Aggregation
Strategy

Request

Multicast

Response-1

Response-2

Response-N

Combined
Response

Figure 1: Camel parallel processing

94  |  APRIL 2021  |  OPEN SOURCE FOR YOU  |  www.OpenSourceForU.com

Admin InSight

	 .aggregationStrategy (new

ResponseAggregator())

	 .parallelProcessing()

	 .executorService (executorService)

	 .to (“subRoute1”, “subRoute2”,

subroute3”)

Approach 2: Define a custom thread
pool in camelContext.xml. You can then
reference the custom thread pool using
the executorServiceRef attribute to look
up the thread pool by ID.

<threadPool id=”customThreadPool”

threadName=”customThread”

poolSize=”300” maxPoolSize=”300”/>

from (“mainRoute”)

	 .multicast()

	 .aggregationStrategy (new

ResponseAggregator())

	 .parallelProcessing()

	 .executorServiceRef

(customThreadPool)

	 .to (“subRoute1”, “subRoute2”,

subroute3”)

Approach 2 is preferred since the
thread pool configuration goes into the
configuration file (camelContext.xml)
and can be modified without changing
any code.

A few points about the
configuration for the custom thread
pool: Define a unique pool for each
parallel processing flow and tune the
pool based on the requirements of the
route. A few factors to consider – the
maximum load expected to be handled
by the main route, the number of sub-
routes to be processed by the thread
pool, and the ratio of processing time
vs wait time expected when the threads
are executing the sub-routes. Determine
the number of threads needed and use
the same value for both poolSize and
maxPoolSize. Quoting from Javadoc on
the behaviour of pool sizes: “If there are
more than corePoolSize but less than
maximumPoolsize threads running, a
new thread will be created only if the
queue is full.”

b. Streaming
When using the parallel
processing EIPs, we specify an
AggregationStrategy that aggregates/
combines the responses from parallel
sub-routes into one combined response.
However, by default, the responses are
aggregated in the same order in which
the parallel sub-routes are invoked. This
default behaviour causes aggregation
tasks to spend lot of CPU in the polling
mechanism. By enabling streaming we
can reduce this CPU usage and provide
a better performance. With streaming,
the responses will be processed as and
when they are received rather than in
the order of multicast route invocation.

 Note: Streaming should
be applied only if the
AggregationStrategy does not
depend on the order of responses
from the sub-routes. An example is:

from (“mainRoute”)

	 .multicast()

	 .aggregationStrategy (new

ResponseAggregator())

	 .parallelProcessing()

	 .streaming()

	 .executorService(executorService)

	 .to (“subRoute1”, “subRoute2”,

subroute3”)

[1]	 https://camel.apache.org/components/latest/eips/enterprise-integration-patterns.html
[2] 	 https://camel.apache.org/components/latest/eips/multicast-eip.html
[3] 	 https://camel.apache.org/manual/latest/threading-model.html
[4] 	 https://access.redhat.com/documentation/en-us/red_hat_fuse/7.3/html/apache_

camel_development_guide/basicprinciples#BasicPrinciples-Thread
[5] 	 https://access.redhat.com/documentation/en-us/red_hat_fuse/7.3/html/apache_

camel_development_guide/msgrout#MsgRout-Multicast

 	References

c. Parallel aggregation
AggregationStrategy combines the
responses from parallel sub-routes
into one final response. This is done
by invoking the aggregate() method in
the AggregationStrategy class for each
response received from the sub-route.

By default, Camel synchronises the
call to the aggregate method. If parallel
aggregation is enabled, then the aggregate
method on AggregationStrategy can be
called concurrently. This can be used to
achieve higher performance when the
AggregationStrategy is implemented as
thread safe.

 Note: Enabling parallel
aggregation would require the
AggregationStrategy to be implemented
as thread safe. An example is:

from (“mainRoute”)

	 .multicast()

	 .aggregationStrategy(new

ResponseAggregator()

	 .parallelAggregate()

	 .parallelProcessing()

	 .streamlining()

	 .executorService (executorService)

	 .to (“subRoute1, “subRoute2”,

subroute3”) 						

The author is a principal software architect in the lodging, ground and sea (LGS)
team at Sabre’s Bengaluru Global Capability Center. He has more than 14 years of
experience in designing and developing scalable, enterprise applications.

 By: Lokesh Chenta

The views expressed in this paper solely belong to the author, and does not reflect
the views of their employer (Sabre).

Disclaimer

